Abstract
This paper investigates the distributed recursive filtering issue of a class of stochastic parameter systems with randomly occurring faults. An event-triggered scheme with an adaptive threshold is designed to better reduce the communication load by considering dynamic changes of measurement sequences. In the framework of Kalman filtering, a distributed filter is constructed to simultaneously estimate both system states and faults. Then, the upper bound of filtering error covariance is derived with the help of stochastic analysis combined with basis matrix inequalities. The obtained condition with a recursive feature is dependent on the statistical characteristic of stochastic parameter matrices as well as the time-varying threshold. Furthermore, the desired filter gain is derived by minimizing the trace of the obtained upper bound. Finally, two simulation examples are conducted to demonstrate the effectiveness and feasibility of the proposed filtering method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.