Abstract
This paper presents new schemes for recursive estimation of the state transition probabilities for hidden Markov models (HMMs) via extended least squares (ELS) and recursive state prediction error (RSPE) methods. Local convergence analysis for the proposed RSPE algorithm is shown using the ordinary differential equation (ODE) approach developed for the more familiar recursive output prediction error (RPE) methods. The presented scheme converges and is relatively well conditioned compared with the previously proposed RPE scheme for estimating the transition probabilities that perform poorly in low noise. The ELS algorithm presented is computationally of order N/sup 2/, which is less than the computational effort of order N/sup 4/ required to implement the RSPE (and previous RPE) scheme, where N is the number of Markov states. Building on earlier work, an algorithm for simultaneous estimation of the state output mappings and the state transition probabilities that requires less computational effort than earlier schemes is also presented and discussed. Implementation aspects of the proposed algorithms are discussed, and simulation studies are presented to illustrate the convergence and convergence rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.