Abstract
We consider the problem of estimating the valueℓ(ϕ) of a linear functional, where the structural functionϕmodels a nonparametric relationship in presence of instrumental variables. We propose a plug-in estimator which is based on a dimension reduction technique and additional thresholding. It is shown that this estimator is consistent and can attain the minimax optimal rate of convergence under additional regularity conditions. This, however, requires an optimal choice of the dimension parametermdepending on certain characteristics of the structural functionϕand the joint distribution of the regressor and the instrument, which are unknown in practice. We propose a fully data driven choice ofmwhich combines model selection and Lepski’s method. We show that the adaptive estimator attains the optimal rate of convergence up to a logarithmic factor. The theory in this paper is illustrated by considering classical smoothness assumptions and we discuss examples such as pointwise estimation or estimation of averages of the structural functionϕ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.