Abstract

This paper considers adaptive estimation of AR∞ models under time-varying variances of unknown forms. We utilize the sieve method to approximate the autoregressive model of infinite order, and then develop kernel-based estimators of the residual variances and associated adaptive least squares (ALS) estimators of the autoregressive coefficients. We prove the ALS estimator has the same efficiency as its infeasible counterpart. Simulation results show the adaptive procedure can help achieve efficiency gains in finite samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.