Abstract

Error diffusion is a procedure for generating high quality bilevel images from continuous-tone images so that both the continuous and halftone images appear similar when observed from a distance. It is well known that certain objectionable patterning artifacts can occur in error-diffused images. Here, we consider a method for adjusting the error-diffusion filter concurrently with the error-diffusion process so that an error criterion is minimized. The minimization is performed using the least mean squares (LMS) algorithm in adaptive signal processing. Using both raster and serpentine scanning, we show that such an algorithm produces better halftone image quality compared to traditional error diffusion with a fixed filter. Based on the adaptive error-diffusion algorithm, we propose a method for constructing a halftone image that can be rendered at multiple resolutions. Specifically, the method generates a halftone from a continuous tone image such that if the halftone is down-sampled, a binary image would result that is also a high quality rendition of the continuous-tone image at a reduced resolution. Such a halftone image is suitable for progressive transmission, and for cases where rendition at several resolutions is required. Cases for noninteger scaling factors are also considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call