Abstract

Road grade plays an important role in deciding power repartition and improving energy management performances. In this paper, instead of predictive energy management strategies where terrain information is obtained from GIS maps, an adaptive equivalent consumption minimization strategy (A-ECMS) considering current road grade information is proposed, aiming to design an instantaneous feedback supervisory controller based on the estimation of current road grade without using external devices. To achieve real-time control for a plug-in hybrid electric truck (PHET), the bounds of the optimal equivalent factor (EF) are analyzed considering comprehensive performances, then the sensitivity of EF is evaluated towards road grade. According to the effect of different road grade scenarios on control performances, the real-time EF adaptation is divided into two conditions, i.e. SOC-based adaptation and Estimation-based adaption. The proposed A-ECMS can achieve good performances on both fuel economy improvement and emission reduction, which approximates the results obtained from the DP algorithm, and the high computing load can be avoided for real-time implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.