Abstract
Damped Linear Oscillators estimated by 2nd-order Latent Differential Equation have assumed a constant equilibrium and one oscillatory component. Lower-frequency oscillations may come from seasonal background processes, which non-randomly contribute to deviation from equilibrium at each occasion and confound estimation of dynamics over shorter timescales. Boker (2015) proposed a model of individual change on multiple timescales, but implementation, simulation, and applications to data have not been demonstrated. This study implemented a generalization of the proposed model; examined robustness to varied timescale ratios, measurement error, and occasions-per-person in simulated data; and tested for dynamics at multiple timescales in experience sampling affect data. Results show small standard errors and low bias to dynamic estimates at timescale ratios greater than 3:1. Below 3:1, estimate error was sensitive to noise and total occasions; rates of non-convergence increased. For affect data, model comparisons showed statistically significant dynamics at both timescales for both participants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.