Abstract

White LEDs were invented the 1990's. Since then they have been extensively researched and applied in various ways. Compared with conventional lighting devices, the white LED has lower power consumption, lower voltage requirements, longer lifetime, smaller size, faster response, and cooler operation. The white LED will eventually replace incandescent or fluorescent lights in offices and homes. We have proposed an indoor visible light wireless communication system that utilizes multiple white LED lighting equipment. In this system, the equipment is used not only for illuminating rooms but also for an optical wireless communication system. The system has significantly higher power levels than infrared wireless communication systems, since it also functions as the main lighting equipment. One problem is we tend to install many lighting sources on a ceiling in order to illuminate the room as evenly as possible. While the number of sources permits site diversity transmission over LOS links, the optical path difference between the multiple sources triggers intersymbol interference (ISI), which significantly degrades system performance. This paper overcomes the ISI problem by proposing an adaptive equalization system. We elucidate the most effective training sequence interval for channel estimation in a mobile environment. And we show that the adaptive equalization system with the effectual interval alleviates the influence of shadowing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.