Abstract

Indoor radio communication in the 20–60 GHz band using TDMA with differentially encoded QPSK is consideed. A burst-type transmission, based on a basic time slot consisting of a preamble for synchronization and equalizer training and of an information data section, is adopted. We employ fractionally spaced decision feedback equalization and give the relevant analytical and simulated performance results in terms of Doppler frequency. An upper limit is determined for the channel variations which can be tracked by the equalizer. Performance results are obtained for equalization with and without carrier phase recovery. Calculated and simulated probability of error show that error propagation degrades the performance by about 6 dB at a bit error rate of 10−3 for a channel without any diversity. However, the effect of past decision errors is negligible for dual diversity. Numerical stability, required accuracy, and hardware complexity are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.