Abstract
Image segmentation has been broadly applied in computer vision and image analysis. However, many segmentation methods suffer from limited accuracy for noisy images. To improve the robustness of the existing picture fuzzy clustering and solve the problem of selecting spatial constraint parameter, a novel picture fuzzy clustering is proposed. Firstly, a novel symmetric regularizing term is constructed to solve the time-consuming problem of existing picture fuzzy clustering, and the corresponding fuzzy clustering is proposed. Secondly, considering the correlation between current pixel and its neighboring pixels, the objective function is modified by adaptive weighting fusion of local mean information, and the maximum weight entropy constraint is embedded into it to solve the difficulty of parameter selection. Finally, the local spatial information constraint item of the current pixel is constructed by using its neighboring picture fuzzy partition information and is utilized to modify the picture fuzzy partition information of current pixel to correct the clustering center. Results show the proposed algorithm has some potential advantages in segmentation accuracy and anti-noise robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.