Abstract

In this paper, through the edge computing application path, the educational evaluation system was optimized using the adaptive entropy theory polymerization method which based on applying the path. By adding multiple constraints to filter out nodes and educational evaluation edges that do not meet the requirements, the improved algorithm is used to optimize the redundant paths to avoid loops and node detour problem. To improve the accuracy of education evaluation and evaluation, ensure the load balance in the domain, and solve the problems of single evaluation attribute and high overlap of education evaluation paths. This paper proposes a multi-attribute education evaluation model that refines the evaluation attributes of education evaluation and uses analytic hierarchy process perform weight distribution. The algorithm can improve the accuracy of the evaluation of the education evaluation system while ensuring the computational efficiency, and can ensure the load balance within the domain, and improve the network survival time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.