Abstract
We present an adaptive energy management system for dynamically reconfigurable processors that chooses an energy-minimizing set of custom instructions (CIs) and then power-gates the temporarily unused subset of CIs. It requires a comprehensive power model to estimate the power consumption of different CIs at run time. We deploy our new energy management in two state-of-the-art reconfigurable processors (RISPP and Molen) and perform an elaborative evaluation of energy savings under various area and performance constraints for different technology nodes. We demonstrate the energy benefits by comparing it to state-of-the-art power-gating techniques for FPGAs. The work is implemented as a prototype on a Xilinx FPGA platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.