Abstract

We present a novel approach for efficient optimization of systems consisting of expensive to simulate components and relatively inexpensive system-level simulations. We consider the types of problem in which the components of the system problem are independent in the sense that they do not exchange coupling variables, however, design variables can be shared across components. Component metamodels are constructed using Kriging. The metamodels are adaptively sampled based on a system level infill sampling criterion using Efficient Global Optimization. The effectiveness of the technique is demonstrated by applying it on numerical examples and an engineering case study. Results show steady and fast converge to the global deterministic optimum of the problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.