Abstract
In this paper, we are concerned with the problem of adaptive dynamic surface error constrained control for a class of nonlinear multiple-input-multiple-output systems with unknown backlash-like hysteresis nonlinearities. By transforming the tracking errors into new virtual error variables which are incorporated into the proposed prescribed performance control strategy, the prescribed steady-state and transient performance can be ensured. Compared with the existing methods, we introduce the prediction error which is generated between the system state and the serial–parallel estimation model to construct the adaptive laws for neural network weights. The proposed prediction error technique can be used to compensate the tracking error, which implies that a higher accuracy of the identified neural network model is achieved. It is shown that the proposed control approach can guarantee that all the signals of the resulting closed-loop systems are bounded and the output tracks the desired trajectory, while the tracking error are confined all times within the prescribed bounds. Finally, a simulation example is provided to confirm the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.