Abstract

BackgroundAccording to the classical model of Macevicz and Oster, annual eusocial insects should show a clear dichotomous "bang-bang" strategy of resource allocation; colony fitness is maximised when a period of pure colony growth (exclusive production of workers) is followed by a single reproductive period characterised by the exclusive production of sexuals. However, in several species graded investment strategies with a simultaneous production of workers and sexuals have been observed. Such deviations from the "bang-bang" strategy are usually interpreted as an adaptive (bet-hedging) response to environmental fluctuations such as variation in season length or food availability.To generate predictions about the optimal investment pattern of insect colonies in fluctuating environments, we slightly modified Macevicz and Oster's classical model of annual colony dynamics and used a dynamic programming approach nested into a recurrence procedure for the solution of the stochastic optimal control problem.Results1) The optimal switching time between pure colony growth and the exclusive production of sexuals decreases with increasing environmental variance. 2) Yet, for reasonable levels of environmental fluctuations no deviation from the typical bang-bang strategy is predicted. 3) Model calculations for the halictid bee Lasioglossum malachurum reveal that bet-hedging is not likely to be the reason for the graded allocation into sexuals versus workers observed in this species. 4) When environmental variance reaches a critical level our model predicts an abrupt change from dichotomous behaviour to graded allocation strategies, but the transition between colony growth and production of sexuals is not necessarily monotonic. Both, the critical level of environmental variance as well as the characteristic pattern of resource allocation strongly depend on the type of function used to describe environmental fluctuations.ConclusionUp to now bet-hedging as an evolutionary response to variation in season length has been the main argument to explain field observations of graded resource allocation in annual eusocial insect species. However, our model shows that the effect of moderate fluctuations of environmental conditions does not select for deviation from the classical bang-bang strategy and that the evolution of graded allocation strategies can be triggered only by extreme fluctuations. Detailed quantitative observations on resource allocation in eusocial insects are needed to analyse the relevance of alternative explanations, e.g. logistic colony growth or reproductive conflict between queen and workers, for the evolution of graded allocation strategies.

Highlights

  • IntroductionAccording to the classical model of Macevicz and Oster, annual eusocial insects should show a clear dichotomous "bang-bang" strategy of resource allocation; colony fitness is maximised when a period of pure colony growth (exclusive production of workers) is followed by a single reproductive period characterised by the exclusive production of sexuals

  • According to the classical model of Macevicz and Oster, annual eusocial insects should show a clear dichotomous "bang-bang" strategy of resource allocation; colony fitness is maximised when a period of pure colony growth is followed by a single reproductive period characterised by the exclusive production of sexuals

  • 3) Model calculations for the halictid bee Lasioglossum malachurum reveal that bethedging is not likely to be the reason for the graded allocation into sexuals versus workers observed in this species

Read more

Summary

Introduction

According to the classical model of Macevicz and Oster, annual eusocial insects should show a clear dichotomous "bang-bang" strategy of resource allocation; colony fitness is maximised when a period of pure colony growth (exclusive production of workers) is followed by a single reproductive period characterised by the exclusive production of sexuals. In several species graded investment strategies with a simultaneous production of workers and sexuals have been observed Such deviations from the "bang-bang" strategy are usually interpreted as an adaptive (bet-hedging) response to environmental fluctuations such as variation in season length or food availability. For social insects the problem of an optimised investment into growth and reproduction mostly concerns the growth of the colony as a whole; how much resources should be allocated to increase worker number and how much to the production of sexuals? Dynamic allocation strategies in eusocial insects have first been analysed by Macevicz and Oster [8] and Oster and Wilson [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call