Abstract
In this paper, a new stable value iteration adaptive dynamic programming (ADP) algorithm, named “θ-ADP” algorithm, is proposed for solving the optimal control problems of infinite horizon discrete-time nonlinear systems. By introducing a parameter θ in the iterative ADP algorithm, it is proved that any of iterative control obtained in the proposed algorithm can stabilize the nonlinear system which overcomes the disadvantage of traditional value iteration algorithms. Neural networks are used to approximate the performance index function and compute the optimal control policy, respectively, for facilitating the implementation of the iterative θ-ADP algorithm. Finally, a simulation example is given to illustrate the performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.