Abstract

AbstractAdaptive dynamic programming (ADP) methods have demonstrated their efficiency. However, many of the applications for which ADP offers great potential, are also safety‐critical and need to meet safety specifications in the presence of physical constraints. In this article, an optimal controller for solving discrete‐time nonlinear systems with state constraints is proposed. By introducing the control barrier function into the utility function, the problem with state constraints is transformed into an unconstrained optimal control problem, addressing state constraints which are difficult to handle by traditional ADP methods. The constructed sequence of value function is shown to be monotonically non‐increasing and converges to the optimal value. Besides, this article gives the stability proof of the developed algorithm, as well as the conditions for satisfying the state constraints. To implement and approximate the control barrier function based adaptive dynamic programming algorithm, an actor‐critic network structure is built. During the training process, two neural networks are used for approximation separately. The performance of the proposed method is validated by testing it on a simulation example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.