Abstract
This paper presents a full state feedback adaptive dynamic inversion method for uncertain systems that depend nonlinearly upon the control input. Using a specialized set of basis functions that respect the monotonic property of the system nonlinearities with respect to control input, a state predictor is defined for derivation of the adaptive laws. The adaptive dynamic inversion controller is defined as a solution of a fast dynamical equation, which achieves time-scale separation between the state predictor and the controller dynamics. Lyapunov-based adaptive laws ensure that the predictor tracks the state of the nonlinear system with bounded errors. As a result, the system state tracks the desired reference model with bounded errors. Benefits of the proposed design method are demonstrated using Van der Pol dynamics with nonlinear control input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.