Abstract

Parasitic worms (helminths) with complex life cycles divide growth and development between successive hosts. Using data from 597 species of acanthocephalans, cestodes, and nematodes with two-host life cycles, we found that helminths with larger intermediate hosts were more likely to infect larger, endothermic definitive hosts, although some evolutionary shifts in definitive host mass occurred without changes in intermediate host mass. Life-history theory predicts parasites to shift growth to hosts in which they can grow rapidly and/or safely. Accordingly, helminth species grew relatively less as larvae and more as adults if they infected smaller intermediate hosts and/or larger, endothermic definitive hosts. Growing larger than expected in one host, relative to host mass/endothermy, was not associated with growing less in the other host, implying a lack of cross-host trade-offs. Rather, some helminth orders had both large larvae and large adults. Within these taxa, however, size at maturity in the definitive host was unaffected by changes to larval growth, as predicted by optimality models. Parasite life-history strategies were mostly (though not entirely) consistent with theoretical expectations, suggesting that helminths adaptively divide growth and development between the multiple hosts in their complex life cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call