Abstract

Disturbances in the aviation environment can compromise the stability of the aviation optoelectronic stabilization platform. Traditional methods, such as the proportional integral adaptive robust (PI + ARC) control algorithm, face a challenge: once high-frequency disturbances are introduced, their effectiveness is constrained by the control system’s bandwidth, preventing further stability enhancement. A state equalizer speed closed-loop control algorithm is proposed, which combines proportional integral adaptive robustness with state equalizer (PI + ARC + State equalizer) control algorithm. This new control structure can suppress high-frequency disturbances caused by mechanical resonance, improve the bandwidth of the control system, and further achieve fast convergence and stability of the PI + ARC algorithm. Experimental results indicate that, in comparison to the control algorithm of PI + ARC, the inclusion of a state equalizer speed closed-loop compensation in the model significantly increases the closed-loop bandwidth by 47.6%, significantly enhances the control system’s resistance to disturbances, and exhibits robustness in the face of variations in the model parameters and feedback sensors of the control object. In summary, integrating a state equalizer speed closed-loop with PI + ARC significantly enhances the suppression of high-frequency disturbances and the performance of control systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call