Abstract

In this paper, an adaptive distributed control protocol is proposed for non-affine multi-agent system with nonlinear dead-zone input and state constraints under the condition of directed topology. In order to overcome the difficulties caused by non-affine terms in the system, the nonlinear dynamics system is transformed. Then, the neural network technology is introduced to approximate the unknown non-affine terms for the obtained system. State constraints and dead-zone input are common system problems. In order to solve these problems, the barrier Lyapunov function is introduced in this paper. According to the barrier Lyapunov function and backstepping method, an adaptive distributed controller is designed, so that state variables do not violate constraint bounds and the system is not affected by dead-zone input. By Lyapunov stability theory, it is proved that the signals of each follower are cooperative semi-global uniform ultimate boundedness (CSUUB), and the outputs of the followers track the output of the leader. Simulation example is given to demonstrate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call