Abstract
Due to limited amplitude and controlled phase of current supplied by inverter-interfaced renewable power plants (IIRPPs), the IIRPP-side distance protection of lines connected to IIRPPs fails to detect the fault location accurately, so it may malfunction. The composite sequence network of a line connected to an IIRPP during asymmetrical faults is analyzed, and an adaptive distance protection based on the analytical model of additional impedance is proposed in this study. Based on open circuit property of negative-sequence network at the IIRPP-side, the equivalent impedance of power grid and current flowing through fault point are calculated in real-time using local measurements, which are substituted into the analytical model of additional impedance to calculate fault location. In the case of negative-sequence reactive current injection from IIRPPs during asymmetrical faults, the error of calculating fault point current from local measurements is analyzed and corrected to ensure reliability of the proposed protection. The proposed protection alleviates the effect of fault resistance in a system with weak sources. In addition, the proposed protection can adapt to different grid codes (GCs), the operation mode change of the power grid, and the capacity change of the IIRPP. PSCAD/EMTDC test results verify the effectiveness of the proposed protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.