Abstract

This paper studies the adaptive neural control (ANC)-based tracking problem for discrete-time nonlinear dynamics of an unmanned aerial vehicle subject to system uncertainties, bounded time-varying disturbances, and input saturation by using a discrete-time disturbance observer (DTDO). Based on the approximation approach of neural network, system uncertainties are tackled approximately. To restrain the negative effects of bounded disturbances, a nonlinear DTDO is designed. Then, a backstepping technique-based ANC strategy is proposed by utilizing a constructed auxiliary system and a discrete-time tracking differentiator. The boundness of all signals is proven in the closed-loop system under the discrete-time Lyapunov analysis. Finally, the feasibility of the proposed ANC technique is further specified based on numerical simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call