Abstract
We present a new adaptive genuinely multidimensional method within the framework of the discontinuous Galerkin method. The discontinuous evolution Galerkin (DEG) method couples a discontinuous Galerkin formulation with approximate evolution operators. The latter are constructed using the bicharacteristics of multidimensional hyperbolic systems, such that all of the infinitely many directions of wave propagation are considered explicitly. In order to take into account multiscale phenomena that typically appear in atmospheric flows, nonlinear fluxes are split into a linear part governing the acoustic and gravitational waves and a nonlinear part that models advection. Time integration is realized by the IMEX type approximation using the semi-implicit second-order backward differentiation formula (BDF2). Moreover in order to approximate efficiently small scale phenomena, adaptive mesh refinement using the space filling curves via the AMATOS function library is employed. Four standard meteorological test cases are used to validate the new discontinuous evolution Galerkin method for dry atmospheric convection. Comparisons with the Rusanov flux, a standard one-dimensional approximate Riemann solver used for the flux integration, demonstrate better stability and accuracy, as well as the reliability of the new multidimensional DEG method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.