Abstract

This paper presents a novel approach to digitizing and modeling pressure swing adsorption (PSA) processes using an uncertainty-aware digital twin. PSA modeling presents unique challenges due to its complex and cyclic behavior, which lacks a steady state. By contributing to the literature on periodic systems, we provide valuable insights into the potential applications of artificial intelligence and digital twins beyond the field of cyclic processes. Our proposed methodology can enhance the understanding and optimization of complex systems across various industries and applications. The proposed digital twin is uncertainty-aware and reliable, continuously updating itself through online learning and utilizing a novel feedback tracker to accurately represent the PSA system. This robust and adaptable methodology supports optimal PSA system operation and facilitates informed decision-making for enhanced process operation. The results demonstrate that the proposed approach yields a reliable digital twin for the PSA unit, capable of tracking the process’s complex dynamics and adapting to changes, including adsorbent degradation, which is a significant challenge in PSA operations. Overall, this work highlights the potential of advanced technologies, such as digital twins and artificial intelligence, to improve performance and efficiency in the field of process engineering. This work contributes to the ongoing efforts to optimize industrial processes and support sustainable development by providing a reliable and adaptable methodology for digitizing PSA processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.