Abstract
Species response to climate change is influenced by predictable (selective) and unpredictable (random) evolutionary processes. To understand how climate change will affect present-day species, it is necessary to assess their adaptive potential and distinguish it from the effects of random processes. This will allow predicting how different genotypes will respond to forecasted environmental change. Space for time substitution experiments are an elegant way to test the response of present day populations to climate variation in real time. Here we assess neutral and putatively adaptive variation in 11 populations of Festuca rubra situated along crossed gradients of temperature and moisture using molecular markers and phenotypic measurements, respectively. By comparing population differentiation in putatively neutral molecular markers and phenotypic traits (QST-FST comparisons), we show the existence of adaptive differentiation in phenotypic traits and their plasticity across the climatic gradient. The observed patterns of differentiation are due to the high genotypic and phenotypic differentiation of the populations from the coldest (and wettest) environment. Finally, we observe statistically significant covariation between markers and phenotypic traits, which is likely caused by isolation by adaptation. These results contribute to a better understanding of the current adaptation and evolutionary potential to face climate change of a widespread species. They can also be extrapolated to understand how the studied populations will adjust to upcoming climate change without going through the lengthy process of phenotyping.
Highlights
Understanding how climate change will affect the evolution of existing populations is one of the greatest challenges of evolutionary ecology at present
QST estimates for plasticity were obtained for nine phenotypic traits
The population genetic differentiation estimated from molecular markers was very low
Summary
Understanding how climate change will affect the evolution of existing populations is one of the greatest challenges of evolutionary ecology at present. Existing populations will have to adjust to these environmental changes in order to avoid extinction. The study was partly supported institutional research projects RVO 67985939 and MSMT. The plant material upon which this research was based was collected from within the SEEDCLIM Climate Grid field sites in western Norway, PI Vigdis Vandvik, funded by the Norwegian Research Council projects NORKLIMA 184912 and KLIMAFORSK 244525. The funders did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.