Abstract

Large area and flexible electronic systems are widely used in applications such as displays, image sensors, wearable electronics and energy harvesting systems. A key element in many of these systems is the electrostatic discharge protection circuit. The conventional protection circuit uses large aspect-ratio diode connected thin film transistors that offer a low resistance path to the surge current but also does the same to signals during normal system operation resulting in power loss. Here we describe as well as demonstrate the feasibility of a novel idea for electrostatic discharge protection involving an adaptive dielectric thin film transistor that self-configures itself to a low resistance state during an electrostatic discharge event and a high resistance state during normal operation without external control. This results in 1000–10000 times the power savings compared to diode connected TFTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.