Abstract

In this paper we address an important issue in motion analysis: the detection of moving objects. A statistical approach is adopted in order to formulate the problem. The inter-frame difference is modeled by a mixture of Laplacian distributions, and a Gibbs random field is used for describing the label set. A new method to determine the regularization parameter is proposed, based on a voting technique. Then two different multiscale algorithms are evaluated, and the labeling problem is solved using either ICM (iterated conditional modes) or HCF (highest confidence first) algorithms. Experimental results are provided using synthetic and real video sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.