Abstract

A methodology using adaptive time series analysis is tested on data from a seismometer monitoring the north end building (NEB) of the Virgo interferometer during four acoustic noise injections. Empirical mode decomposition (EMD) is used for adaptive detrending, while the recently developed time-varying filter EMD algorithm is used for narrowband mode extraction. Mode persistency is evaluated with detrended fluctuation analysis, and denoising is achieved by setting a threshold $$H_{\text {thr}}$$ on the Hurst exponent of the obtained modes. The adopted methodology is proven useful in adaptively separating the seismic noise induced by the acoustic noise injections from the underlying nonlinear non-stationary recordings of the seismometer monitoring NEB. The Hilbert–Huang transform provides a high-resolution time–frequency representation of the data. Furthermore, the local Hurst exponent exhibits a drop due to the injections that is of the same order of $$H_{\text {thr}}$$ . This suggests that the local Hurst exponent could be calculated as an initial step in order to select the threshold $$H_{\text {thr}}$$ . The algorithms could be used for detector characterisation purposes such as the investigation of non-Gaussian noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.