Abstract
We introduce a rate-adaptive system in which the receiver demodulates only those bits that have a high probability of being correct, treating nondemodulated bits as erasures. Several sets of decision regions, derived using composite hypothesis testing, are proposed for 16-QAM and 16-phase-shift keying, which allow for the simple implementation of this demodulation strategy. We demonstrate that pre-encoding the data with a Raptor code allows for simple reconstruction of the message, regardless of the erasure pattern introduced from the nondemodulated bits. We prove the optimality of the proposed decision regions in selecting the most likely subset of bits from any received symbol in moderate-to-high signal-to-noise ratios, and we analyze the performance of demodulating with these decision regions over an additive white Gaussian noise channel. Also demonstrated is the strong performance of 16-QAM for this application, compared with other power-efficient constellations and the near-optimality of using Gray mapping, even under the proposed alternate sets of decision regions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.