Abstract
This article constructs two adaptive control laws to achieve deformation reduction and attitude tracking for a rotary variable-length crane arm with system parameter uncertainties and asymmetric input-output constraints. Two auxiliary systems are given to deal with the input constraints, an asymmetric-logarithm-barrier Lyapunov function is established for achieving the asymmetric output constrains, and five adaptive laws are constructed to handle system parameter uncertainties. Besides, the control design is based on a partial differential equation model, and the S-curve acceleration and deceleration method is used for regulating the arm extension speed. Both the system stability and uniform ultimate boundedness of the controlled crane arm are analyzed. Simulation results validate the effectiveness of our established control laws.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.