Abstract
A deep convolutional neural network (CNN) becomes a widely used tool for object detection. Many previous works have achieved excellent performance on object detection benchmarks. However, these works present generic detectors whose performance will drop rapidly when they are applied to a surveillance scene. In this paper, we propose an efficient method to construct a scene-specific regression model based on a generic CNN-based classifier. Our regression model is an adaptive deep CNN (ADCNN), which can predict object locations in the surveillance scene. First, we transfer the generic CNN-based classifier to the surveillance scene by selecting useful kernels. Second, we learn the context information of the surveillance scene in our regression model for accurate location prediction. Our main contributions are: 1) a transfer learning method that selects useful kernels in the generic CNN-based classifier; 2) a special architecture that can effectively learn the local and global context information in the surveillance scene; and 3) a new objective function to effectively train parameters in ADCNN. Compared with some state-of-the-art models, ADCNN achieves the best performance on three surveillance data sets for pedestrian detection and one surveillance data set for vehicle detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.