Abstract

In order to monitor the development of Parkinson's disease for a long time and to study the mechanism of deep brain stimulation for Parkinson's disease, an adaptive deep brain stimulation system based on ADS1292 was designed for Parkinson's rats. The system consists of a main control unit, an acquisition module, a stimulation module and a wireless communication module, the system uses high-performance, low-power MSP430 as the main control chip. The high resolution, low noise analog to digital conversion chip ADS1292 acquires local field potential (LFP) signals. The stimulus module uses the DAC8532 to output a square wave with adjustable amplitude, frequency, and pulse width. At the same time, the wireless communication module uses the Bluetooth to transmit the LFP signal to the upper computer for processing and receive the control command from the upper computer for achieving adaptive adjustment of the stimulus parameters. Through verification, the system completes the generation of stimulation signals and the acquisition of weak bioelectric signals. The system is light in weight, small in size and low in power consumption, and is very suitable for small animal experiments such as rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.