Abstract

Objective. Contemporary deep brain stimulation (DBS) for Parkinson’s disease is delivered continuously, and adjustments based on patient’s changing symptoms must be made manually by a trained clinician. Patients may be subjected to energy intensive settings at times when they are not needed, possibly resulting in stimulation-induced adverse effects, such as dyskinesia. One solution is ‘adaptive’ DBS, in which stimulation is modified in real time based on neural signals that co-vary with the severity of motor signs or of stimulation-induced adverse effects. Here we show the feasibility of adaptive DBS using a fully implanted neural prosthesis. Approach. We demonstrate adaptive deep brain stimulation in two patients with Parkinson’s disease using a fully implanted neural prosthesis that is enabled to utilize brain sensing to control stimulation amplitude (Activa PC + S). We used a cortical narrowband gamma (60–90 Hz) oscillation related to dyskinesia to decrease stimulation voltage when gamma oscillatory activity is high (indicating dyskinesia) and increase stimulation voltage when it is low. Main results. We demonstrate the feasibility of ‘adaptive deep brain stimulation’ in two patients with Parkinson’s disease. In short term in-clinic testing, energy savings were substantial (38%–45%), and therapeutic efficacy was maintained. Significance. This is the first demonstration of adaptive DBS in Parkinson’s disease using a fully implanted device and neural sensing. Our approach is distinct from other strategies utilizing basal ganglia signals for feedback control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call