Abstract

This paper presents an adaptive dead-time compensation strategy to obtain fundamental phase voltage for inverter-fed vector-controlled permanent magnet synchronous motor drives. A phase dead-time compensation voltage (DTCV) to compensate the disturbance voltage due to undesirable characteristics of inverter, such as dead time, turn on/off time of switching devices, and on-voltages of switching devices and diode, is transformed into q-axis DTCV in the rotor reference frame. The relationship between q-axis DTCV and a dead-time compensation time (DTCT) is investigated. DTCT is identified online by using q-axis disturbance voltage, which is estimated by a disturbance observer. The amplitude of phase DTCV is adaptively determined according to the identified DTCT. The accuracy of identified DTCT is experimentally confirmed by calculating the mean absolute percentage error (MAPE) between calculated active power and measured one. MAPE for adaptive DTCT is within 5% at any operating point and is less than that for the fixed DTCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.