Abstract

Product obsolescence occurs in the manufacturing industry as new products with better performance or improved cost-effectiveness are developed. A proactive strategy for predicting component obsolescence can reduce manufacturing losses and lead to customer satisfaction. In this study, we propose a machine learning algorithm for a proactive strategy based on an adaptive data selection method to forecast the obsolescence of electronic diodes. Typical machine learning algorithms construct a single model for a dataset. By contrast, the proposed algorithm first determines a mathematical cover of the dataset via unsupervised clustering and subsequently constructs multiple models, each of which is trained with the data in one cover. For each data point in the test dataset, an optimal model is selected for regression. Results of empirical experiments show that the proposed method improves the obsolescence prediction accuracy and accelerates the training procedure. A novelty of this study is that it demonstrates the effectiveness of unsupervised clustering methods for improving supervised regression algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.