Abstract

The phenomenon by which the gastric mucosa is protected in response to mild irritants has been called adaptive cytoprotection, a mechanism believed to be related to production of endogenous prostaglandins (PGs). We tested whether PGs generated by mild irritant prevent injury through the release of calcitonin gene-related peptide (CGRP) from the sensory nerves using prostanoid receptor-knockout mice. The stomach was doubly cannulated and perfused with 1 mol/L NaCl or 50% ethanol. CGRP levels in the perfusate were determined by enzyme immunoassay, and the injured area was estimated at the end of perfusion. Preperfusion with mildly hypertonic saline (1 mol/L NaCl) increased generation of gastric PGE(2) and PGI(2) and reduced ethanol-induced mucosal damage. Exposure of ethanol after 1 mol/L NaCl increased intragastric CGRP levels from 166 +/- 27 to 713 +/- 55 pg/2 min (n = 4, P < 0.05), and the protective action of 1 mol/L NaCl was inhibited by indomethacin treatment. CGRP antagonist blocked 1 mol/L NaCl-induced protective effect. Intragastric perfusion of 50% ethanol after administration of PGI(2), but not of PGE(2), increased CGRP levels. Application of 1 mol/L NaCl to IP receptor-knockout mice (IP(-/-)) did not elicit the protective effects seen in the wild-type on ethanol-induced gastric mucosal lesions. Protective effect of 1 mol/L NaCl was observed in EP3 receptor-knockout mice (EP3(-/-)). CGRP level during ethanol perfusion was not increased in IP(-/-) but was increased in EP3(-/-) and wild-type counterparts after preperfusion of 1 mol/L NaCl. These results indicate that the endogenous PGI(2) generated by 1 mol/L NaCl may have a protective role in gastric mucosal injury through enhancement of CGRP release from gastric mucosa. This mechanism may explain the adaptive cytoprotection observed after treatment with mild irritants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.