Abstract
Particle swarm optimization (PSO) algorithm has a potential to solve route planning problem for unmanned aerial vehicle (UAV). However, the traditional PSO algorithm is easy to fall into local optimum under the complicated environments with multiple threats. In order to improve the performance in different complicated environments, a novel and effective PSO algorithm with adaptive adjustment of the parameters, cylinder vector and different evolution operator, named ACVDEPSO, is proposed and demonstrated to be effective for route planning problem for UAV. In the proposed ACVDEPSO, the velocity of the particle is converted to its cylinder vector for the convenience of the path search. It is worth highlighting that the parameters of ACVDEPSO algorithm are automatically chosen by the time and the fitness values of the particles. Furthermore, a challenger based on differential evolution operator is introduced to reduce the probability of falling into local optimum and accelerate the algorithm convergence speed. The simulation experiments have been conducted in real digital elevation model (DEM) maps to test the performance of the ACVDEPSO. The experiment results validate that the optimization performance of the ACVDEPSO outperforms the other comparison methods, which can efficiently generate a higher quality path for UAV under the complicated 3D environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.