Abstract

A vehicle adaptive cruise system can control the speed and the safe distance between vehicles rapidly and effectively, which is an integral part of an intelligent driver assistance system. Adaptive cruise predictive control algorithms based on variable compass operator pigeon-inspired optimization (PIO) and PSO are proposed to improve the time response characteristics of multi-objective adaptive cruise system predictive control. Firstly, a longitudinal kinematic model of an adaptive cruise system was established and linearly discretized. Secondly, the multi-objective optimal cost function and parameter constraints were designed by integrating factors such as distance error, relative speed, acceleration and impact, and a mathematical model of the adaptive cruise predictive control optimization problem was constructed. Finally, PIO and PSO were used to solve the optimal control law for MPC and simulated by Matlab. The results show that the adaptive cruise system can reach a steady state quickly with the control laws of PIO or PSO. However, due to the global optimization and fast convergence characteristic, variable compass operator PIO has better time response characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.