Abstract
This paper proposes an economic adaptive cruise controller (EACC) that considers battery aging characteristics based on adaptive model predictive control (AMPC). By establishing a battery capacity decay model based on experimental data, the capacity loss during vehicle operation is determined, and the parameters in the equivalent circuit model are updated according to the actual capacity of the battery. The controller uses indicators that characterize driving safety, tracking performance, comfort, and economy. The economic indicator is the decrease in the value of the battery capacity. Fuzzy weight allocation is designed based on the host vehicle’s speed and the workshop’s relative distance to adjust the weight between different indicators under different working conditions. Additionally, the proposed controller is compared with other traditional controllers under different working conditions, cycle times, and battery state of health (SOH). The simulation results indicate that, under various battery SOH conditions, the performance of the controller which considers battery capacity degradation characteristics is better than that of traditional controllers. Moreover, the fixed-weight controller performs better when following a vehicle at medium and low speeds. Finally, the proposed strategy was validated through hardware-in-the-loop testing, demonstrating its ability to meet the real-time requirements of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.