Abstract
A technique is developed for analysing elasto-plastic unbounded media by adaptively coupling the finite-element method with the scaled boundary finite-element method. The analysis begins with a finite-element mesh that tightly encloses the load–medium interface, capturing non-linearity in the very near field. The remainder of the problem is modelled accurately and efficiently using the semi-analytical scaled boundary finite-element method. Load increments are applied in the usual (finite-element) way and the plastic stress field grows outwards from the load–medium interface as the solution advances. If plasticity is detected at a Gauss point in the outer band of finite-elements, an additional band of finite-elements are added around the perimeter of the existing mesh and the scaled boundary finite-element domain is stepped out accordingly. This technique exploits the most attractive features of both the finite-element and scaled boundary finite-element methods. The technique is shown to be highly accurate and both user and computationally efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.