Abstract

In this paper, an adaptive attitude coordination control problem for spacecraft formation flying is investigated under a general directed communication topology containing a directed spanning tree with a leader as the root. In the presence of unknown time-varying inertia, persistent external disturbances and control input saturation, a novel robust adaptive coordinated attitude control algorithm with no prior knowledge of inertia for spacecraft is proposed to coordinately track the common time-varying reference states. Aiming at optimizing the control algorithm, a dynamic adjustment function is introduced to adjust the control gain according to the tracking errors. The effectiveness of the proposed control scheme is illustrated through numerical simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.