Abstract
A cooperative model is presented to enable sharing of the spectrum with secondary users. Compared with the optimal model and competitive model, the cooperative model could reach the maximum total profit for secondary users with better fairness. The cooperative model is built based on the Nash equilibrium. Then a conceding factor is introduced so that the total spectrum required from secondary users will decrease. It also results in a decrease in cost which the primary user charges to the secondary users. The optimum solution, which is the maximum total profit for the secondary users, is called the collusion state. It is possible that secondary users may leave the collusion state to pursue the maximum of individual profit. The stability of the algorithm is discussed by introducing a vindictive factor to inhabit the motive of deviation. In practice, the number of secondary users may change. Adaptive methods have been used to deal with the changing number of secondary users. Both the total profit and fairness are considered in the spectrum allocating. The shared spectrum is 11.3893 with a total profit of 65.2378 in the competitive model. In the cooperative model, the shared spectrum is 8.5856 with the total profit of 73.4963. The numerical results reveal the effectiveness of the cooperative model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.