Abstract
This paper is concerned with the cooperative diving problem of homogenous under-actuated saucer-type autonomous underwater gliders subject to model uncertainties, input constraints as well as external disturbances. A modular back-stepping design method is used to design a robust adaptive cooperative diving controller for each glider. Especially, a kinematic control law is at first designed by employing a line-of-sight guidance principle, and a path variable update law is developed based on a synchronization strategy. Next, in order to identify the unknown dynamics of gliders, an estimation model is constructed by using a fuzzy approximation technique and a low-frequency learning scheme. Finally, it is proved that the closed-loop system is input-to-state stable by using a cascade stability analysis. The simulation results are given to demonstrate the effectiveness of the proposed method for cooperative diving of autonomous underwater gliders in a vertical plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.