Abstract

An advanced controller design for a sensorless interior permanent-magnet synchronous motor control system is proposed. A maximum torque/ampere control algorithm is used to improve the torque performance of the drive system. In addition, an adaptive controller combined with the maximum torque/ampere control is proposed to obtain a good transient response and a good load disturbance rejection capability. The proposed control method can be applied to both a sensorless adjustable speed control system and a sensorless position control system. Using the Lyapunov stability theory and Barbalat's lemma it is shown that the closed-loop sensorless control system is an asymptotical stable system. A 32-bit digital signal processor is used to execute the rotor position estimation algorithm and the control algorithm. Experimental results validate the theoretical analysis and show the correctness and feasibility of the proposed system

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.