Abstract

Virtual Synchronous Generator (VSG) control strategy can provide inertia and damping support for the power system by simulating the operating characteristics of synchronous generator, and improve the frequency response of the power system. First, analyse the influence of various parameters on the output characteristics of the system by establishing a mathematical model of VSG. Secondly, to fully utilize the flexible and controllable characteristics of VSG control strategy, the basic principle of VSG parameter adaptation is obtained through the analysis of the angular frequency oscillation characteristics of synchronous generators, and an adaptive control strategy of virtual inertia and virtual damping parameter is proposed, which can better track changes in frequency, and set the action threshold for adaptive control. Finally, compare the frequency and active power response between the traditional VSG control strategy and the adaptive one and verify the effectiveness of the proposed control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call