Abstract

An appropriate control strategy can play an important role in further improving the fuel economy performance of hybrid electric vehicle (HEV). This research developed a novel adaptive control strategy to achieve optimal power distribution for a series-parallel hybrid electric bus (SPHEB) to adapt driving pattern instantaneously. First, a methodology of extracting mode transition control and power distribution strategy from dynamic programming (DP) solution is proposed for the development of the hierarchical energy management strategy. A SPHEB energy management problem under the Chinese typical bus driving schedule at urban district (CTBDS_UD) is investigated as a case study. Second, an approach of driving pattern recognition (DPR) module is developed. For adaptive learning, four typical driving patterns are selected as the database of driving condition and using the extraction method described above to acquire optimal control strategies for four driving patterns. Third, a framework of adaptive control strategy has been proposed based on the extracted hierarchical energy management strategy from DP and combined with DPR. Finally, the simulation results demonstrate the proposed adaptive strategy can make power distribution proper adjustments in real time and be capable of improving significantly the fuel efficiency of the SPHEB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.