Abstract
This paper addresses the trajectory tracking control of a non-holonomic wheeled mobile manipulator subjected to uncertainties and external force. The proposed algorithm is robust adaptive control strategy where external force and uncertainties are compensated by adaptive update techniques. The proposed algorithm makes the robot follow simultaneously desired end-effector and platform trajectories in task space without violating the non-holonomic constraints. The system stability and the convergence of tracking errors are rigorously proved using a Lyapunov theory. Simulation results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a classical Computed Torque Controller (CTC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Vehicle Autonomous Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.