Abstract
An adaptive control scheme is proposed for the end-effector trajectory tracking control of free-floating space robots. In order to cope with the nonlinear parameterization problem of the dynamic model of the free-floating space robot system, the system is modeled as an extended robot which is composed of a pseudo-arm representing the base motions and a real robot arm. An on-line estimation of the unknown parameters along with a computed-torque controller is used to track the desired trajectory. The proposed control scheme does not require measurement of the accelerations of the base and the real robot arm. A two-link planar space robot system is simulated to illustrate the validity and effectiveness of the proposed control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.