Abstract

SummaryThe aim of this study was to design an adaptive control strategy based on recurrent neural networks (RNNs). This neural network was designed to obtain a non‐parametric approximation (identification) of discrete‐time uncertain nonlinear systems. A discrete‐time Lyapunov candidate function was proposed to prove the convergence of the identification error. The adaptation laws to adjust the free parameters in the RNN were obtained in the same stability analysis. The control scheme used the states of the identifier, and it was developed fulfilling the necessary conditions to establish a behavior comparable with a quasi‐sliding mode regime. This controller does not use the regular form of the switching function that commonly appears in the sliding mode control designs. The Lyapunov candidate function to design the controller and the identifier simultaneously requires the existence of positive definite solutions of two different matrix inequalities. As consequence, a class of separation principle was proven when the RNN‐based identifier and the controller were designed by the same analysis. Simulations results were designed to show the behavior of the proposed controller solving the tracking problem for the trajectories of a direct current (DC) motor. The performance of the proposed controller was compared with the solution obtained when a classical proportional derivative controller and an adaptive first‐order sliding mode controller assuming poor knowledge of the plant. In both cases, the proposed controller showed superior performance when the relation between the tracking error convergence and the energy used to reach it was evaluated. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.